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Abstract—This paper studies the problem of information theo-
retic secure communication when a source has private messages
to transmit to m destinations, in the presence of a passive
adversary who eavesdrops an unknown set of k edges. The
information theoretic secure capacity is derived over unit-edge
capacity separable networks, for the cases when k = 1 and m

is arbitrary, or m = 3 and k is arbitrary. This is achieved
by first showing that there exists a secure polynomial-time
code construction that matches an outer bound over two-layer
networks, followed by a deterministic mapping between two-layer
and arbitrary separable networks.

I. INTRODUCTION

Today, a large portion of exchanged data over communica-

tion networks is inherently sensitive and private (e.g., banking,

professional, health). Moreover, given the recent progress in

quantum computing, we can no longer exclusively rely on

computational security: we need to explore unconditionally

(information theoretic) secure schemes. In this paper, we

present new results for information theoretic security over

networks with multiple unicast sessions.

We assume that a source has m private messages to send

to m destinations over a network modeled as a directed graph

with unit capacity edges. This communication occurs in the

presence of a passive external adversary who has unbounded

computational capabilities (e.g., quantum computer), but lim-

ited network presence, i.e., she can wiretap (an unknown set

of) at most k edges of her choice. We seek to characterize the

information theoretic secure capacity for this setup.

Our results apply to the class of separable networks that,

broadly speaking, are networks that can be partitioned into

a number of edge disjoint subnetworks that satisfy certain

properties (see Definition 3). We establish a direct mapping

between the secure capacity for separable networks, and the

secure capacity for two-layer networks constructed as follows.

The source is connected to a set of relays via direct edges.

These relays are then connected to the m destinations, such

that each destination is directly connected to an (arbitrary)

subset of the relays. An example of such a two-layer network

with 6 relays and 3 destinations is shown in Fig. 1.

In [1], we characterized the secure capacity region for

separable networks having m = 2 destinations, and we derived

an outer bound on the secure capacity region for networks

having an arbitrary number of destinations m. We showed that
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Fig. 1: Example of a two-layer network. For k = 1, the joint

scheme achieves the rate triple (2, 2, 1). This rate triple

cannot be achieved by spatially separating the transmissions

of the keys and the encoded messages.

for m = 2 it is optimal to use different parts of the network

to transmit the keys and the encoded messages. However, as

we also pointed out in [2], such a scheme is not optimal

when m > 2. We proved this by constructing a joint scheme

for two-layer networks that mixes the transmission of keys

and encoded messages over the network, and showing that

it can achieve higher secure rates than spatially separating

the transmissions of the keys and the encoded messages. For

instance in Fig. 1, the joint scheme achieves the rate triple

(2, 2, 1), which is not possible otherwise.

In this paper, we prove that we can leverage the polynomial-

time joint scheme in [2] for two-layer networks, to prove

capacity results for separable networks for the following

additional cases: (i) networks where m = 3 and k is arbitrary;

(ii) networks where k = 1 and m is arbitrary; (iii) networks

where k and m are arbitrary, but the network has some special

structure in terms of minimum cut. To prove optimality in

these new cases, we need new proof techniques, that include

calculating the dimension of the sum of m = 3 subspaces

in a form that matches a modified outer bound. We also

prove that the secure capacity region of any separable network

can be characterized from the secure capacity region of the

corresponding two-layer network, referred to as the child

two-layer network. In particular, we provide a deterministic

mapping from a secure scheme for the child two-layer network

to a secure scheme for the corresponding separable network.

We note that for m = 2 every network is separable [1];

however this is no longer the case for m ≥ 3 [2].
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Related Work. Shannon [3] proved that the one-time pad can

provide perfect information theoretic security with pre-shared

keys. For degraded point-to-point channels, Wyner [4] showed

that information theoretic security can be achieved without

pre-shared keys. With feedback, Maurer [5] proved that secure

communication is possible, even when the adversary has a

channel of better quality than the legitimate receiver. Multicast

traffic over networks of unit capacity edges was analyzed by

Cai et al. in [6], and followed by several other works, such

as [7], [8]. In [6], the information theoretic secure capacity was

characterized for networks where a source multicasts the same

information to a number of destinations in the presence of a

passive external adversary eavesdropping any k edges of her

choice. In [9], the authors studied adaptive and active attacks

and also considered multiple multicast traffic over a layered

network structure, with arbitrary number of layers. However,

different to this paper, every node in one layer is connected to

every node in the next layer. It therefore follows that, for the

case of two layers, our setting encompasses the one in [9].

Paper Organization. In Section II we define two-layer and

separable networks, and formulate the problem. In Section III,

we review the secure scheme proposed in [2] and in Sec-

tion IV, we characterize its achieved rate region. In Section IV

we also show the mapping between separable and two-layer

networks. In Section V and Section VI, we prove that the

scheme achieves the secure capacity when k = 1 and m = 3,

respectively. In Section VI, we also provide sufficient condi-

tions for the scheme to be optimal for arbitrary k and m.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Notation: Calligraphic letters indicate sets; ∅ is the empty set;

A1⊔A2 indicates the disjoint union of A1 and A2; A1\A2 is

A1∩AC
2 ; [n] := {1, 2, . . . , n}; [x]+ := max{0, x} for x ∈ R.

A two-layer network consists of one source S that wishes

to communicate with m destinations, by hopping information

through one layer of t relays. As such, a two-layer network is

parameterized by: (i) the integer t, which denotes the number

of relays in the first layer; (ii) the integer m, which indicates

the number of destinations in the second layer; (iii) m sets

Mi, i ∈ [m], such that Mi ⊆ [t], where Mi contains the

indexes of the relays connected to destination Di. An example

of a two-layer network is shown in Fig. 1, for which t = 6,

m = 3, M1 = {1, 2, 4}, M2 = {3, 4, 5, 6} and M3 = {2, 3}.

We represent a two-layer wireline network with a directed

acyclic graph G = (V, E), where V is the set of nodes

and E is the set of edges. The edges represent orthogonal

and interference-free communication links, which are discrete

noiseless memoryless channels of unit capacity over a common

alphabet. If an edge e ∈ E connects a node i to a node j, we

denote, tail(e) = i and head(e) = j. I(v) and O(v) are the set

of all incoming and outgoing edges of node v, respectively.

Source S has a message Wi for destination Di, i ∈ [m].
These m messages are assumed to be independent. Thus, the

network consists of multiple unicast traffic, where m unicast

sessions take place simultaneously and share the network

resources. A passive external eavesdropper Eve is also present

and can wiretap any k edges of her choice. The symbol

transmitted over n channel uses on e ∈ E is denoted as Xn
e .

In addition, for Et ⊆ E we define Xn
Et

= {Xn
e : e ∈ Et}. We

assume that S has infinite sources of randomness Θ, while the

other nodes in the network do not have any randomness.

Over this network, we seek to reliably communicate (with

zero error) the message Wi, i ∈ [m] to destination Di so that

Eve receives no information about the content of the messages.

In particular, we are interested in ensuring perfect information

theoretic secure communication, and we aim at characterizing

the secure capacity region, which is next formally defined.

Definition 1 (Secure Capacity Region). A rate m-tuple

(R1, R2, . . . , Rm) is said to be securely achievable if there

exist a block length n with Ri = 1
n
H(Wi), ∀i ∈ [m] and

encoding functions fe, ∀e ∈ E , over a finite field Fq with

Xn
e =

{

fe
(

W[m],Θ
)

if tail(e) = S,

fe ({X
n
ℓ : ℓ ∈ I(tail(e))}) otherwise,

such that each destination Di can reliably decode the message

Wi i.e., H (Wi|{X
n
e : e ∈ I(Di)}) = 0, ∀i ∈ [m].

We also require perfect secrecy, i.e., I
(

W[m];X
n
EZ

)

=
0, ∀ EZ ⊆ E such that |EZ | ≤ k. The secure capacity region

is the closure of all such feasible rate m-tuples.

In order to prove that our designed scheme meets the perfect

secrecy requirement in Definition 1, we will use the “matrix

rank” condition on perfect secrecy proved in [10, Lemma 3.1].

We now provide a couple of definitions that will be used

in the remaining part of the paper, and we state a remark that

highlights some properties of the networks of interest.

Definition 2 (Min-Cut). We denote by MA the capacity of

the min-cut between the source S and the set of destinations

DA := {Di, i ∈ A}, and refer to it as the min-cut capacity.

Definition 3 (Separable Graph). A graph G = (V , E) with a

source and m destinations is said to be separable if it can

be partitioned into 2m − 1 edge disjoint graphs (graphs with

empty edge sets are also allowed). In particular, these graphs

are denoted as G′
J = (V , E ′

J ),J ⊆ [m],J 6= ∅ and are such

that E ′
J ⊆ E and E ′

J ∩ E ′
L = ∅, ∀J 6= L ⊆ [m]. Moreover,

their min-cut capacities satisfy the following condition

MA =
∑

J⊆[m]
J∩A6=∅

M ′
J , ∀A ⊆ [m], (1)

where, for G, MA is defined in Definition 2, and the graph G′
J

has the following min-cut capacities: (i) M ′
J from the source

S to any non-empty subset of destinations in J , and (ii) zero

from the source S to the set of destinations {Di : i ∈ [m]\J }
(see Figure 1 in [2] for an illustration).

Remark 1. For two-layer networks, we have MA =
|∪i∈AMi|. For notational convenience, we let M∩{i,j} =
|Mi ∩ Mj | and M∩{i,A} = |Mi ∩ (∪j∈AMj) |. Moreover,

we also assume that M{i} > k, ∀i ∈ [m] (otherwise secure

communication is not possible) with M∅ := k for consistency.
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III. SECURE TRANSMISSION SCHEME

We here review the secure polynomial-time scheme for two-

layer networks that we recently proposed in [2]. The source

S encodes the message packets with k random packets and

transmits these packets on its outgoing edges to the t relays.

We can write the received symbols at the t relays as







X1

...

Xt






=



 M | V















W1

...

Wm

K











, (2)

where: (i) Wi, i ∈ [m] is a column vector of Ri message

packets for destination Di, (ii) K is a column vector which

contains the k random packets, (iii) M is a matrix of dimen-

sion t×(
∑m

i=1 Ri) (the matrix M is constructed so that all the

destinations correctly decode their intended message), and (iv)

V is a Vandermonde matrix of size t×k, chosen to guarantee

security as per [10, Lemma 3.1]; hence, Eve learns nothing

about the messages W[m] by eavesdropping any k edges.

Each relay i ∈ [t] forwards the received symbol Xi in (2)

to the destinations it is connected. As such, each destination

will observe a subset of symbols from {X1, X2, . . . , Xt}.

Finally, destination Di, i ∈ [m] selects Ri decoding vectors

and performs the inner product with [X1, X2, . . . , Xt]. The

decoding vectors are chosen such that: (1) they are in the left

null space of V , i.e., in the right null space of V T ; this ensures

that each destination is able to cancel out the random packets

(encoded with the message packets); (2) they have zeros in the

positions corresponding to the relays Di is not connected to;

this ensures that each destination uses only the symbols that it

observes. In other words, all the decoding vectors that Di can

choose belong to the null space of the matrix Vi defined as

V T
i =

[

V CT
i

]

, (3)

where Ci is a matrix of dimension t̄ × t, with t̄ being the

number of relays to which Di is not connected to (see [2] for

details and the construction of the matrix M ). In particular,

each row of Ci has all zeros except a one in the position

corresponding to a relay to which Di is not connected to. For

instance, with reference to the network in Fig. 1, we have

C1 =





0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 , C3 =









1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









.

IV. ACHIEVED SECURE RATE REGION

In this section, we first derive the rate region achieved by

the secure scheme in Section III, and then present the mapping

between separable and two-layer networks. In particular, we

have the following lemma (see proof in [11, Appendix A]).

Lemma 1. The secure rate region achieved by the proposed

scheme is given by

0 ≤
∑

i∈ARi ≤ dim
(
∑

i∈A Ni

)

, ∀A ⊆ [m], (4)

where Ni is the right null space of the matrix Vi in (3).

A. Secure Scheme for any Separable Network

We will here first show that for any separable network, a

corresponding two-layer network can be created such that both

networks have the same min-cut capacities MA for all A ⊆
[m]. We will then show that a secure scheme designed for a

two-layer network can be converted to a secure scheme on the

corresponding separable network.

By Definition 3, a separable network G with m destinations,

can be separated into 2m − 1 networks G′
J , J ⊆ [m],J 6= ∅

where G′
J has min-cut capacity M ′

J to every subset of

destinations in J . To construct the corresponding two-layer

network, we use the following iterative procedure: (1) we

place the source node S in layer 0 of our network, and the

m destination nodes Di, i ∈ [m], in layer 2 of our network;

(2) for each J ⊆ [m], we add M ′
J relays in layer 1 of our

network; (3) for each J ⊆ [m], we connect: (i) the source in

layer 0 with all the added M ′
J relays, and (ii) all the added M ′

J

relays with the destinations Di, i ∈ J in layer 2. By following

the above procedure, for each A ⊆ [m], the min-cut capacity

in the constructed two-layer network is MA as given in (1).

As such, the new constructed two-layer network has the same

min-cut capacity MA of the corresponding separable network.

In what follows, we refer to the original separable network

as parent separable network, and to the corresponding two-

layer network as child two-layer network. We now show that

a secure scheme designed for the child two-layer network can

be converted to a secure scheme for the corresponding parent

separable network. Towards this end, we assume that we have

a secure scheme for the child two-layer network as described

in (2), and proceed as follows. On every graph G′
J in the

parent separable network, we transmit (multicast) the symbols

that were transmitted in the child two-layer network from the

source S in layer 0 to the set of M ′
J relays in layer 1 that were

added when constructing the child two-layer network for G′
J .

Note that this multicast towards all destinations Di, i ∈ J ,

is possible since G′
J has min-cut capacity M ′

J . With such a

strategy, at the end of the transmissions every destination in the

parent separable graph still receives the same set of packets as

it would have received in the child two-layer network. Thus, all

the destinations can still decode their respective messages. In

[11, Appendix C] we also prove that this scheme satisfies the

security condition in [10, Lemma 3.1], and hence it is secure.

Moreover, since the child two-layer and the parent separable

networks have equal min-cut capacities, they have the same

outer bound on the secure capacity region [1]. Thus, an optimal

scheme on a child two-layer network results in an optimal

scheme on the corresponding parent separable network.

V. SECURE CAPACITY FOR k = 1

In this section, we consider the case when Eve wiretaps any

k = 1 edge of her choice, and characterize the secure capacity

region. In particular, we prove the following theorem.

Theorem 2. For the two-layer network when Eve wiretaps

any k = 1 edge of her choice, the secure capacity region is
∑

i∈ARi ≤ MA − CA, ∀A ⊆ [m], (5)
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with CA being the number of connected components in an

undirected graph where: (i) there are |A| nodes, i.e., one for

each i ∈ A; (ii) an edge between node i and node j, {i, j} ∈
A, i 6= j, exists if Mi ∩Mj 6= ∅.

Outer Bound: The secure capacity region is contained in [1]:
∑

i∈ARi ≤ MA − k, ∀A ⊆ [m]. (6)

We now show that the outer bound in (6) can be equivalently

written as in (5). Let Vi, i ∈ [CA], represent the set of nodes

in the i-th component of the graph constructed as explained

in Theorem 2. Then, clearly A =
⊔CA

i=1 Vi and we can write

∑

i∈ARi =
∑CA

j=1

(

∑

i∈Vj
Ri

) (a)

≤
∑CA

j=1

(

MVj
− k

)

(b)
= MV1∪V2∪...∪VCA

−kCA
(c)
= MA − CA,

where: (i) the inequality in (a) follows by applying (6) for

each set Vi, i ∈ [CA], (ii) the equality in (b) follows since, by

construction, Mi ∩Mj = ∅ for all i ∈ Vx and j ∈ Vy with

x 6= y, and (iii) the equality in (c) follows since A =
⊔CA

i=1 Vi

and k = 1. Thus, (6) implies (5). Moreover, since CA ≥ 1, (5)

implies (6). This shows that the rate region in Theorem 2 is

an outer bound on the secure capacity region when k = 1.

We now consider an example of a two-layer network and

show how the upper bound derived above applies to it.

Example: Let A = {2, 3, 4}, and assume that M1 = {1, 2},

M2 = {3, 4}, M3 = {4, 5, 6} and M4 = {7, 8}. Then, we

construct an undirected graph such that: (i) it has 3 nodes since

|A| = 3 and (ii) has an edge between node 2 and node 3 since

M2 ∩M3 = {4} 6= ∅. It therefore follows that this graph has

CA = 2 components. In particular, we have
∑

i∈ARi =
∑

i∈V1
Ri +

∑

i∈V2
Ri ≤ M{2,3,4} − 2 = 4, (7)

where V1 = {2, 3} and V2 = {4}.

Achievable Rate Region: We here show that the rate region in

Theorem 2 is achieved by the scheme described in Section III.

In particular, we show

MA − CA ≤ dim
(
∑

i∈ANi

) (a)
= dim

(

(∩i∈AVi)
⊥
)

= t− dim (∩i∈AVi) ,

where recall that dim
(
∑

i∈A Ni

)

is the secure rate perfor-

mance of our proposed scheme in Section III (see Lemma 1).

Note that the equality in (a) follows by using the property of

the dual space and the rank nullity theorem, and Vi, i ∈ A is

defined in (3). In other words, we next show that

∀A ⊆ [m], dim (∩i∈AVi) ≤ t−MA + CA. (8)

Towards this end, we would like to count the number of

linearly independent vectors x ∈ F
t
q that belong to (∩i∈AVi).

We note that, by our construction: (i) V T consists of one

row of t ones, and (ii) Ci has zeros in the positions indexed by

Mi. Hence, if a vector belongs to Vi, then all its components

indexed by Mi have to be the same, i.e., either they are all

zeros, or they are all equal to a multiple of one. Thus, we have

q choices to fill these positions indexed by Mi.

Now, consider Vj with j ∈ A and j 6= i. By using the

same logic as above, if a vector belongs to Vj , then all its

components indexed by Mj have to be the same and we have

q choices to fill these. We now need to count the number of

such choices that are consistent with the choices made to fill

the positions indexed by Mi.

Towards this end, we consider two cases:

• Case 1: Mi ∩Mj = ∅. In this case, there is no overlap in

the elements indexed by Mi and Mj and hence we can use

all the available q choices to fill the positions indexed by Mj ;

• Case 2: Mi ∩Mj 6= ∅. There is an overlap in the elements

indexed by Mi and Mj . Since we have already fixed the

elements indexed by Mi, there is no choice for the elements

indexed by Mj (as all the elements have to be the same).

By iterating the same reasoning as above for all i ∈ A, we

conclude that we can fill all the positions indexed by ∪i∈AMi

of a vector x ∈ F
t
q and make sure that x ∈ (∩i∈AVi) in qCA

ways. This is because, there are CA connected components,

and for each of these components we have only q choices

to fill the corresponding positions in the vector x (i.e., the

positions that correspond to the relays to which at least

one of the destinations inside that component is connected).

Once we fix any position inside a component, in fact all the

other positions inside that component have to be the same,

and thus we have no more freedom in choosing the other

positions. Moreover, the remaining t−MA positions of x can

be filled with any value in Fq and for this we have qt−MA

possible choices. Therefore, the number of vectors x ∈ F
t
q

that belong to (∩i∈AVi) is at most qCA+t−MA , which implies

∀A ⊆ [m], dim (∩i∈AVi) ≤ t − MA + CA. This proves

that the secure scheme in Section III achieves the rate region

in Theorem 2. We now illustrate our method of identifying

vectors that belong to ∩i∈AVi through an example.

Example: Let t = 8, m = 4, M1 = {1, 2}, M2 = {3, 4},

M3 = {4, 5, 6} and M4 = {7, 8}. Let A = {2, 3, 4}.

We want to count the number of vectors x ∈ F
8
q such that

x ∈ V2 ∩ V3 ∩ V4. We use the following iterative procedure:

• For x to belong to V2 its elements in the 3rd and 4th positions

have to be the same since M2 = {3, 4}. Thus, we have q

choices to fill the 3rd and 4th positions.

• For x to belong to V3, its elements in the 4th, 5th and 6th

positions have to be equal since M3 = {4, 5, 6}. However, the

element in the 4th position has already been fixed in selecting

vectors that belong to V2. Thus, there is no further choice in

filling the 5th and 6th positions.

• For x to belong to V4, its elements in the 7th and 8th

positions have to be the same since M4 = {7, 8}. Since in

the previous two steps, we have not filled yet the elements

in these positions, then we have q possible ways to fill the

elements in the 7th and 8th positions.

• Moreover, we can fill the elements in the 1st and 2nd

positions of x in q2 possible ways.

With the above procedure we get that dim
(

∩i∈{2,3,4}Vi

)

= 4,

which is equal to the upper bound that we computed in (7)

for the same example.
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VI. SECURE CAPACITY FOR m = 3

In this section, we consider the case m = 3, and we charac-

terize the secure capacity region through the theorem below.

Theorem 3. For a two-layer network with m = 3 destinations,

the secure capacity region is given by
∑

i∈ARi ≤ MA − k, ∀A ⊆ [m]. (9)

Clearly the rate region in (9) is an outer bound on the secure

capacity region [1] and can be equivalently written as

∑

i∈ARi ≤ min
P :

⊔

Q∈P

Q=A

{

∑

Q∈P

MQ − |P|k

}

, ∀A ⊆ [m],

where P is a partition of A. We will show that ∀A ⊆ [m],

dim
(
∑

i∈ANi

)

≥ min
P :

⊔

Q∈P

Q=A

{

∑

Q∈P

MQ − |P|k

}

. (10)

We prove (10) by considering three different cases.

Case 1: |A| = 1, i.e., A = {i}, ∀i ∈ [3]. For this case, Vi in (3)

has k+t−M{i} rows. All these rows are linearly independent

since: (i) the rows of V T are linearly independent as V is a

Vandermonde matrix, (ii) Ci is full row rank by construction,

and (iii) any linear combination of the rows of V T will have a

weight of at least t−k+1 (from the Vandermonde property),

whereas any linear combination of the rows of Ci will have a

weight of at most t−M{i} ≤ t− k. It therefore follows that,

∀i ∈ [3], we have that dim(Ni) = t− dim(Vi) = t− (k+ t−
M{i}) = M{i} − k, where the first equality follows by using

the rank-nullity theorem. Thus, (10) is satisfied.

Case 2: |A| = 2, i.e., A = {i, j}. ∀(i, j) ∈ [3]2, i 6= j,

dim(Ni +Nj) = dim(Ni) + dim(Nj)− dim(Ni ∩Nj)

= M{i}+M{j}−2k−dim(Ni ∩Nj), (11)

where the second equality follows by using dim(Ni) derived

in Case 1. Thus, we need to compute dim(Ni∩Nj). Note that,

by definition, Ni ∩Nj is the right null space of

V ⋆
ij =

[

Vi

Vj

]

(3)
=





V T

Ci

Cj



 =

[

V T

Cij

]

,

where in the last equality, Cij is a matrix of dimension (t −
M∩{i,j})× t, with all unique rows. Using a similar argument

as in Case 1 the number of linearly independent rows of V ⋆
ij

is min{t, t−M∩{i,j} + k}. Thus,

dim(Ni ∩Nj) = t−min{t, t−M∩{i,j} + k}

= max{0,M∩{i,j} − k} = [M∩{i,j} − k]+,

where the first equality follows from the rank-nullity the-

orem. We can now write dim(Ni + Nj) from (11) as

dim(Ni +Nj) = min
{

M{i} +M{i} − 2k,M{i,j} − k
}

, and

the condition in (10) is satisfied.

Case 3: A = {1, 2, 3}. We will compute

dim(N1 +N2 +N3) = t− dim(V1 ∩ V2 ∩ V3), (12)

that is, the number of linearly independent vectors x ∈ F
t
q

that belong to V1 ∩ V2 ∩ V3. Similar to the case k = 1, we

have t−M{1,2,3} degrees of freedom to fill the positions of x

corresponding to [t] \∪i∈[3]Mi. We now select a permutation

(i, j, ℓ) of (1, 2, 3). In order for x to belong to Vi, the positions

of x corresponding to Mi can be filled with k degrees of

freedom. This is because: (i) Ci in (3) has zeros in the

positions specified by Mi, and (ii) V T has k rows. Then, to

fill the positions of x specified by Mj so that x ∈ Vj , we have

at most [k − M∩{i,j}]
+ degrees of freedom. This is because

the positions of x corresponding to Mi ∩ Mj are already

fixed. Finally, to fill the positions of x corresponding to Mℓ

so that x ∈ Vℓ, we have at most [k − M∩{ℓ,{i,j}}]
+ degrees

of freedom. This is because the positions of x corresponding

to Mℓ ∩ (Mi ∪ Mj) are already fixed. Thus, we obtain

dim(V1∩V2∩V3) ≤ k+[k −M∩{i,j}]
++[k −M∩{ℓ,{i,j}}]

++
t − M{1,2,3}, which when substituted in (12), satisfies (10)

(see [11, Appendix B]). This proves Theorem 3.

We now conclude this section with the following lemma.

Lemma 4. The scheme in Section III achieves the secure

capacity region of a two-layer network with arbitrary values

of k and m whenever M∩{i,j} ≥ k for all (i, j) ∈ [m]2, i 6= j.

Proof. We can compute dim(∩m
i=1Vi) as follows:

dim(∩i∈AVi)
(a)

≤ t−MA + k + [k −M∩{i1,i2}]
+

+
∑m

j=3 [k −M∩{ij ,{i1,i2,...,ij−1}}]
+

(b)

≤k + t−MA,
where: (a) follows by extending to arbitrary m the iterative

algorithm for Case 3 above to select x ∈ ∩m
i=1Vm, and (b)

follows since M∩{ij ,{i1,i2,...,ij−1}} ≥ M∩{ij ,ij−1} ≥ k. By

using the property of the dual space and the rank-nullity

theorem, we obtain dim(
∑

i∈A Ni) ≥ MA − k, which

satisfies (10) ∀A ⊆ [m]. This proves Lemma 4.
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